
JOURNAL. OF COMPUTATIONAL PHYSICS 25, 32-55 (1977) 

Integration Formulas for the Wave Equation in n Space Dimensions* 

A. H. STROUD 

Department of Mathematics, Texas A & M University, College Station, Texas 77843 

Received August 30, 1976; revised December 7, 1976 

We consider the wave equation in n space dimensions (a%/W) - (aeu/ax,a) - ... - 
(aaqax,*) = F(X, ,..., x”, t). We derive formulas to approximate u at a point (x0* ,..., x,. , t,,) 
assuming u(xl ,..., x, , 0) = f(xl ,..., x,) and ut(xl ,..., x,, , 0) = g(xl ,..., x,) are given. 
The formulas are exact whenf, g, and Fare arbitrary polynomials of degree <d, for various 
integers d, and are approximations to integrals which represent the solution. 

1. INTR~DIJCTI~N 

We consider the problem of solving the wave equation in n space dimensions for 
n > 2. This is the problem of finding u(x, t) z u(xl ,..., x, , t) to satisty 

u tt - 4P = m, 0, 4% 0) =.fM, %(X9 0) = g(x) (1.1) 

Here F(x, t), f(x), g(x), where x = (x1 ,..., x3, are given functions and 

An++--+& & a224 
1 n 

Utt = --@ * 

If 4(x, t) = &fi x, t) is the solution of 

+tt - 44 = 0, bb, 0) = f(x), dt(X, 0) = 0; (1.2) 

if #(x, t) = #(g; x, t) is the solution of 

$tt - 44 = 0, Ilr(x, 0) = 0, $0, 0) = g(x); (1.3) 

and if 5(x, t) = c(c x, t) is the solution of 

5tt - A,< =4x, 9, 5(x, 0) = 0, 5tk 0) = 0; (1.4) 

then the solution of (1.1) is u = I$ + # + <. 
The usual numerical techniques for solving (1.1) obtain the solution on a mesh of 

points. (See, for example, Forsythe and Wasow [7, Chap. 41 or Mitchell [8, Chap. 51.) 
If a solution is required at a large number of points then one of those methods will 
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probably be the most efficient. However, in some cases the solution may be desired 
at only one point (or a small number of points). It may then be desirable to have a 
method especially designed for such a problem. Such a method would also be useful 
for spot checking the solution obtained on a mesh. The methods to be described below 
are of this type. 

For n = 1 the solution of (1.1) is the d’Alembert solution 

u(x, t) = ~[f(x - t> + f(x + t)l + t j-=:’ g(x) dx 

+ 4 Jot j+; F(x, 4 dx dT 
(1.5) 

(see, e.g. Weinberger [6, p. 261). In this case one can approximate u at a point by 
using a quadrature formula for the interval x - t G x < x + t and a cubature 
formula for the triangle 

O<T<‘, X-t+r<x<x+t-7. 

(Cubature formulas for triangles are given by Stroud [4] and by Lyness and Jesperson 
r31.1 

For IZ > 2 the solution of problem (1.1) is also known in terms of integrals. Courant 
and Hilbert [I, p. 6821 show that the solution of (1.3) can be written as 

t a ( 1 
(n-2)/2 

*cbT x3 t> = r(n/2) -@- [P-“2(x, t)] for n even, W-9 

77112 a 
#(g; y-9 0 = ___ - ( 1 2r(n/2) at2 (n-3)‘2 [P-“2(x, t)] for n odd, (1.7) 

where 

a/at2 = (i/2t)(a/at), 

The integral in (1.9) is over the surface of the unit n-sphere defined by 

1 /3 12 _= p12 + /!322 + 0-0 + pn2 = 1. 

The “surface area” of this sphere is w, = 27~“/~/r(n/2). 
The solution of (1.2) can be written as 

40-i X, 0 = (a/at) 44~ X, 0. (1.10) 
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This fact is a special case of Stokes’ rule [6, p 3701. The solution of (1.4) can be 
written as 

{(F; x, t) = IO’ a,h(F; x, t - T; T) d7 (1.11) 

where #(P, x, t - T; T) denotes the solution of 

h - 44 = 0, #(XT 0; 7) = 0, 9% 0; T) = F(x, T>. 

Representation (1.11) is a special case of Duhamel’s principle [ 1, p. 2031. 
The purpose of the present paper is to use the above representations of #, #J, and 5 

to derive formulas for approximating these functions at a point. The formulas will be 
exact when f, g, and Fare arbitrary polynomials of degree dd, for specified integers d. 
Because of the differentiation operator in (1.6) and (1.7) and the occurrence of t in the 
argument of g in (1.8) and (1.9), the evaluation of 4 for n > 2 (and zj for n > 4) 
requires a cubature whose integrand involves partial derivatives off (respectively g). 
In some situations these derivatives may be readily available and in other situations 
they may not. Consequently we will derive two classes of formulas. The simpler class 
is based on direct cubature of a function j(respectively 2) which is constructed by the 
user from f (respectively g) and its derivatives. The theory for these is given in Sec- 
tions 4 and 5; application of these formulas for 4 to the computation of 5 is discussed 
in Section 8. The reader interested only on these formulas may omit Sections 2, 3, 6, 
and 7 entirely. 

A second class of formulas (which are not strictly cubature formulas) are based on 
the theory of Sections 2 and 3 and are presented in Sections 6 and 7. These approximate 
4 and 4 in terms of g and f only. Formulas of this type are not explicitly discussed for 
1; but results analogous to those given in Section 8 could also be obtained. 

Examples are given in Section 9. These examples were computed using subroutines 
listed in report [5]. This report contains eleven subroutines which incorporate the 
formulas derived below. 

2. NOTATION 

We introduce some additional notation. 

(9 i zzz -11/z. 

(ii) If u is a real number, [v] denotes the largest integer .<v. 
(iii) d, m, s, aI ,..., a, , v, (J are nonnegative integers. 
(iv) H,,, = H,,,(xl ,..., x3 denotes a homogeneous polynomial of degree m 

in the n variables; that is 

fL,d~x~ ,..., ax,) = CY~H,,&, ,..., x,) for all (Y. 

(v) A polynomial Q(x, ,..., x,) is called a harmonic polynomial if d,Q = 0. 
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(vi) HA.% denotes a homogeneous harmonic polynomial of degree m in at 
variables. 

(vii) II,,, denotes a basis for the vector space of all H,,, . One such basis is the 
set of all monomials 

=1 3 . . . 
x1-3 X2 a1 + a2 + ..- $- an = m, 

(viii) The number of elements in a basis 17,,, will be denoted by y(m, n). It is 
well known that 

y(m,n) =(m + 12 - l)!/m!(n - l)!. 

(ix) I&$ denotes a basis for the vector space of all Hk,R . II&, contains one 
element: H,& = 1. Form >0,L7A,2 consists of two elements which can be taken as 
Re zm, Im zm, z = x + zj, Below we will mention how a basis II:,, , it > 2, can be 
found. 

(x) The number of elements in a basis 17k,n will be denoted by 6(m, n). It is 
known that 

6(m,n) = y(O,n) = 1 form = 0, 
= y(1, n) = n form = 1, (2.1) 
= y(m,n) - y(m - 2, n) for m > 2. 

(See [2, p. 2371.) 
(xi) CmA(7) denotes the mth degree Gegenbauer polynomial of order h where 

h > -4. CmA(7) is the mth degree polynomial which is orthogonal on the interval 
-1 < 7 < + I, with respect to the weight function (1 - ~~)~-l/~ for all polynomials 
of degree tm. We assume the usual standardization for CmA, namely 

CmA(l) = (m + 2X - l)!/m!(2h - I)! 

It is well known that CmA(7) is an even function of 7 for m even an odd function for 
m odd. We will denote the coefficient of rk in CmA(r) by ef,k . That is 

C,,“(T) = eA,m7m + e~,m-27mpZ + .... 

(xii) A polynomial Q(x, ,..., x, , t) is called a wave polynomial if d,Q = Qtt . 
(xiii) H$T&+1 = H~,,+l(xl ,..., x, , t) denotes a homogeneous wave polynomial 

of degree m in rz space variables, 

(xiv) ITmW,n+l denotes a basis for the vector space of all HE,,,, . In Section 3 we 
will see that wave polynomials are closely related to harmonic polynomials. 

(xv) By U,, we mean the surface of the unit n-sphere, defined in (PI ,..., /3,J- 
space by 

p12 + ... + /I12 = 1. 
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(xvi) By a cubature formula of degree d for U, we mean a set of points and 
coefficients 

(Pkl ,..., /%A & , k = l,..., K (2.2) 

with the property that the approximation 

(l/4 su, *.* /d/31 ,--.v Bn) 43 = ~l&d/%~ y..., fkn) 

is exact when g is an arbitrary polynomial of degree <d, and d is the largest integer 
for which this is true. We note that 

and we always assume 

l%l + .** + t% = 1, k = l,..., K. 

For n = 2 a formula of degree d for Uz, the circumference of the unit circle, 
consists of K = d + 1 points equally spaced around U, with B, = ... = BK = l/K. 
Stroud [4] gives a variety of formulas for U, , n > 3. In the computer programs to be 
described we use Gauss product formulas; such a formula of degree d = 2d, - 1 
contains K = 2dl-l points. 

If u(xl ,..., x,) satisfies Au, = 0 then 

This is a special case of Poisson’s integral formula (see, e.g., Courant and Hilbert 
[l, p. 2651). It follows that if (2.2) is a cubature formula of degree d for U,, then 

for m < d. 

(2.3) 

3. HARMONIC POLYNOMIALS AND WAVE POLYNOMIALS 

We will use two lemmas about harmonic polynomials. 

LEMMA 1. Dejine p” = (t” + f12 + ... + 5,2)1’2. Let Hf,,(B, ,..., 5,) be any 
homogeneous harmonic polynomial of degree s in Zl ,..., f, and let s < m. Then 

&m,s,lL(21 ,..., ant) = ,5”-“C~~,“-“‘2(t/~) H:,& ,..., a,) (3.1) 

is a Hk,,+,(f, ,..., 2, , t). 
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LEMMA 2. Let zm,,,, denote the set of all &,,S., de$ned by (3.1) as Hi,,, varies 
over a basis IIf,,12 . Then the union of the sets 

2 m,o.n 3 -%n,l,?z 2***> zn,m.* 

consistents of 6(m, n + 1) linearly independent polynomials which form a basis 17&+1 . 
Furthermore 

Wn, n + 1) = Am - I,4 + y(m, 4, m > 1. 

Proofs ofthe statements in these lemmas are given by ErdClyi [2, p. 237-2391. These 
properties of harmonic polynomials imply analogous properties of wave polynomials 
which we now give. 

LEMMA 3. Define p = (t2 - xl2 - *.* - xm2)lt2 and let s < m. Then 

Qm,s,& ,---, x, 9 t) E p”+SC;~;-1)‘2(t/p) H;,,(xl ,..., x,) 

is a H~,,+dxl ,..., x, , Q 

Proof. Since Ci-, is either an even or odd function we have 

p”-‘CA+(t/p) = e~-s,m-stm-3 + eA-s,m-s-2tm-s-2p2 + *.. . 

Therefore only even powers of p enter into (3.2). Define x”, = ixk , k = 
p” =pand 

Therefore 
&m.s,n(% ,..., %, t> = isQm.s,n(X1 ,-., x,, 1). 

(3.2) 

1 ,.,., n. Then 

a%L s s .8 wm s n a2&m,s.n A’l I 
at2 at2 vaz,z= 

-is a2Q7n.s*n ) 
axks k = l,..., n. 

It follows that Qna,s,n is a H,&+l. 

THEOREM 1. For fixed m let Z,,,,,,, denote the set of all em,,,, de$ned by (3.2) as 
Hi,n varies over a basis lirt, . Define 

z,n = union of all Z,,,,, for m - s even, 0 < s < m; 

ZLZ = union of all Z,,,,, for m - s odd, 0 < s < m. 

Then the foilowing statements are true. 

(i) The union of the sets ZL,n and Z&,n consists of 8(m, n + 1) = y(m - 1, n) + 
y(m, n) linearly independent polynomials which form a basis II,&,, . 

(ii) ZLn consists of y(m, n) polynomials H&,+l , each of which satisjies 

(apt) fC,,+,(x, ,***, -%I 3 m-0 = 0. (3.3) 
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Furthermore the set of polynomials 

F m,n = {HE,,+l(xl ,... , x, , 0) : Hit,,+1 is in ZLJ 

is a basis II,,,, . Therefore iff(xl ,..., xn) is any H,,, the solution of (1.2) is a linear 
combination of the polynomials in ZA,% . 

(iii) Z&,, consist& of y(m - 1, n) polynomials H”,,,+, , each of which satisfies 

H” m,n+1 (x1 ,..., x,,O)=O. (3.4) 

Furthermore the set of polynomials 

I 
a 

Gm-l.n.= ,,H:,,+,(x, >..., x,, t)l * H&+l is in Z$,, t+o * I 

is a basis I7,-1,, . Therefore ifg(x, ,..., x,J is any Hm-I,n the solution of (1.3) is a linear 
combination of the polynomials in Z&,, . 

Proof. The truth of statement (i) follows from Lemma 2 and the correspondence 
between harmonic polynomials and wave polynomials implied by Lemmas 1 and 3. 

Next consider (ii). Since Z,,,,, contains S(s, n) polynomials the number of poly- 
nomials in ZAsn is 

S(m, n) + S(m - 2, n) + .*. + S(2, n) + S(O, n) for m even, 
S(m, n) + S(m - 2, n) + **. + S(3, n) + S(L n) for m odd. 

By (2.1) each of these sums equals r(m, n). 
Now we show that (3.3) is valid. Each of the H&+1 in ZA,W can be written as (3.2) 

for some H2,,n with m - s even. Then HJ&+l contains only even powers oft and then 
it follows that (3.3) is true. 

Now we show that F,,, is a basis Dm,,, . Since F,,, contains the same number of 
elements as a basis we must only show that the polynomials in F,,, are linearly 
independent. If these polynomials were linearly dependent there would exist a wave 
polynomial Q(x, t) + 0 for which 

Q(x, 0) = 0, (VW e<x, t)lt-0 = 0. 

This is impossible because the only solution of (1.2) with f (x) - 0 is u(x, t) = 0. 
Next consider (iii). By part (i) and the first statement of part (ii) it follows that Z&, 

consists of y(m - 1, n) polynomials. Since m - s is odd, each Hz,,+1 in ZL,, can be 
written as 

Hz,,+1 = [ekn,m-stm-s + *.. + ek.s,ltpQ-S-ll Ht,n , 

X=sS-(n- 1)/2, 
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for some Ht,n . This implies (3.4) and that the polynomials in G,,-l,n have the form 

(a/at) H&+1 ItsO = (-1)‘m-s-1”2e~_,,,(~,2 + .a. + x,#‘+~-‘)‘~ H;,, . (3.5) 

The proof that the polynomials in Gnz-l,n are linearly independent is analogous to the 
proof that the polynomials in F,,, are linearly independent. This completes the proof 
of Theorem 1. 

4. CUBATURE FORMULAS FOR 4 

4.1. n =2/L 

We will write P-~A?(x, t) in a form in which the differentiation with respect to t in 
(1.6) can be carried out. From (1.8) and (1.9) 

tn-‘Wx, t> = 5 1 (t2 -rr2jl,2 f**sg(x, + Ar,..., x, + ,&r> d/3 dr. (4.1) 
(In 

In this integral we make the change of variables 

& = r/A, I = l,..., n. 

Then 
f-l d/3 dr = dc, d[, ‘.’ d<, = dt, 

15 I2 s El2 + *a* + en2 = r2(jl12 + ... + Pn2) = r2. 

Therefore Eq. (4.1) becomes 

In (4.2) we make the change of variables 

fz = xzt I = I,..., n, 

d< = t” dxl ... dXn = t” dx. 

Then Eq. (4.2) becomes 

tn-3&‘(x, t) = 5 ~-~a~,(~ x I) g(x + xt) dx 
IAS1 

where 

(4.2) 

(4.3) 

g(x + xt) = gh + X14..., x, + xno, 
I x I2 = XI2 + ... + xn2, 

4 x I> = I x 12-2v - I x 12F2. 
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Since t does not occur in the limits of integration in (4.3) differentiation with respect 
to t is not difficult. 

From (1.6) and (4.3) we obtain for n = 2 

(4.4) 

In general for IE = 2j~, p > 1 

where 

&%x + xt) = dx + xl> + K,%(X + xt) + **. + b;,,-,t”-l~ g(x + xt) 
(4.6) 

where the bz,j are constants. 
Now we consider cubature formulas for integral (4.5). Ifg(& ,..., 4,) is a polynomial 

of degree m in 5, ,..., & then g(x + xt) and 6(x + xt) are polynomials of degree m in 
Since cubature formulas for (4.5) for (x, t) # (0, t) are obtained by a 

kar knsformation from formulas for (0, t) we can assume that (x, t) = (0, t). 

THEOREM 2 Assume that 

(Pkl ,***, BkA Bk ? k = l,..., K 

is a cubature formula of degree dfor 

ri , 

are found so that the approximation 

U,, . Assume that 

-4 , j = l,..., J 

is exact for the functions 

6& ,.*-, 8,) = a2 + **- + tw2): v = 0, l,..., [d/2]. 

Then formula (4.9) has degree d. 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

The proof will be omitted; it is essentially the same as the proof of a similar result 
of Stroud [4, Theorem 2.8-2, p. 451. 
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that (4.9) be exact for the functions (4.10) means that the rj , Aj 

C 1 AjBr[rj2pE1t2 + .*. + ri2fl&t2]” = Z, v = 0, l,..., [d/2], 
j=lk=l 

t2vil 
(4.11) 

Z" = - 
an IS 

.-* w,(l x I)(X12 + *** + xn?" dx. 

Ixl<l 

If we make the change of variables 

x1 = $6 , 1 = l,..., n, 

integral Z, becomes 

dx = m-l d/3 dr 

t2v+l 1 
z, = - 

s 

p+2v-1 

w?l 

d/J = t2vfl 
o rn-2(1 - r2)l/2 

Because 

k=l 

Eqs. (4.11) simplify to 

1 Ajrf” = (Z,,/t’“), 
j=l 

v = 0, l,..., [d/2]. (4.12) 

We are interested in finding the rj , Aj so that (4.12) is valid with J as small as 
possible. Note that the Z, are independent of it so the same is true of the r, , Aj . To 
simplify the discussion we assume d is an odd integer d = 2d,, - 1. The problem of 
finding the rj , A, reduces to a problem of finding either a Gauss quadrature formula 
or a Radau formula. 

In (4.12) we make the substitution 

f = r2, fi = ri2, Ajt = Aj , j = l,..., J. 

Equations (4.12) become 

gl ‘fj” = I,* v = 0, I,..., [d/2], 

z,* = 1, 2 . 4 ... (2v) 
Iv* = 3 * 5 ... (2v + 1) v > 0. 

If do is even the Fj , & will be a Gauss formula, with .Z = d,/2, for the interval [0, I] 
and weight function (1 - r”)-1/2/2. If do is odd, we set F1 = 0 and the F, , A, will be a 
Radau formula with J = (do + 1)/2. 
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TABLE I 

Values of the r, , Aj in Approximation (4.9) 

d J 

3 1 

5 2 

7 2 

9 3 

11 3 

13 4 

15 4 

17 5 

19 5 

rj 
_--- 

0.816496580927726 

Jj = Aj/t 

I.000000000000000 

0.000000000000000 0.166666666666667 

0.894427190999916 0.833333333333333 

0.508374126853630 0.347854845137454 

0.940432288898543 0.652145154862546 

0.000000000000000 0.066666666666667 

0.643964557508549 0.378474956297847 

0.958458649085161 0.554858377035486 

0.361248674851186 0.171324492379170 

0.750201404456767 0.360761573048139 

0.971113218956983 0.467913934572691 

0.000000000000000 0.035714285714286 

0.489968482125584 0.210704227143506 

0.806158108122710 0.341122692483504 

0.977851643852691 0.412458794658704 

0.279004285823608 0.101228536290376 

0.604419162308214 0.222381034453374 

0.850773580999984 0.313706645877887 

0.983031907891343 0.362683783378362 

0.000000000000000 0.022222222222222 

0.393010676358949 0.133305990851070 

0.673953393223206 0.224889342063126 

0.878400673012427 0.292042683679684 

0.986246858627551 0.327539761183897 

0.226949495949278 0.066671344308688 

0.501662607349521 0.149451349150581 

0.733759251051551 0.219086362515982 

0.901203879456560 0.269266719309996 

0.988856122594578 0.295524224714753 

In Table I we give values of the rj and L!‘~ = AJt for d = 3(2)19. Computer subrou- 
tines WH2G and WH4G, in [5], approximate $ for n = 2 and 4, respectively, using 
this method. In WH2G d may have one of the values d = 7(4)31. In WH4G d may 
have one of the values d = 3(2)11. 
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4.2. n = 2/~ + I 

For n = 2~” + 1, p > I, Eq. (1.7) is 

#(g; x2 f) = W%) S;:/g*(x + /?t) d/3, (4.13) 

g*(x + Bt) = dx + Bt> + CL&,(X + @> + . . . + C;*,-ltu-l -& g(x + /It), (4.14) 

TABLE II 

An Example for n = 2. u(x, y, i) = (x + y + t)6/2; (x0 , y0 , to) = (4,2, 3) 

Degree d A[WH=l QJWH2F2; ZZ=O] +,[WH2F2; ZZ = I]” $,M-I2Gl 

7 169.927183378256 169.926732877911 169.929251570901 117.261927109887 

11 169.927364647192 169.927362437797 169.927369122044 117.261868104647 

15 169.927360324192 169.927360301498 169.927360347843 117.261869785766 

19 169.927360338294 169.927360337995 169.927360338460 117.261869779887 

23 169.927360337623 169.927360337618 169.927360337621 117.261869780179 

True value 169.927360337626 169.927360337626 169.927360337626 117.261869780178 

7 

11 

15 

19 

23 

True value 

L[WI-U $1 + $1 + 51 $2 + $1 + 11 43 + #I + 51 

-44.1892295595634 242.999880928580 242.999430428235 243.001949121224 

-44.1892306977665 243.OOOOO2054073 242.999999844678 243.OOOOO6528925 

-44.1892301173380 242.999999992620 242.999999969926 243.OOOOOO016271 

-44.1892301179068 243.000000000274 242.999999999975 243.000000000440 

-44.1892301178032 242.999999999998 242.999999999994 242.999999999997 

-44.1892301178034 243.000000000000 243.000000000000 243.000000000000 

a The approximations & obtained with subroutine WH2F2 and ZZ = 1 have degree d + 2. 

TABLE III 

An Example for n = 3. u(x, y, z, t) = ln(x + y + z + t), (x0, y, , zO, t,,) = (2,2,2,3) 

Degree d +WHW $[WH3Gl 5WNH31 ++4+1 

7 1.09916878111769 0.760084168319094 0.335551444302545 2.19480439373933 

11 1.09894133978225 0.760188014056073 0.337948234902239 2.19707758874056 

15 1.09853066812567 0.760385575582735 0.338271687104515 2.19718793081292 
19 1.09862258158627 0.760340975677644 0.338261386193157 2.19722494345707 
23 1.09861138031049 0.760346441244328 

27 1.09861233233823 0.760345974840453 

31 1.09861229094568 0.760345995180748 

True value 1.09861228866811 0.760345996300946 0.338266292357163 2.19722457733622 
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TABLE IV 
Examplesforn=4.~=cos2tsin(x+y$z+w),(x,,y~,z,,w,,t,)=(1,1,1,1,1) 

Degree d 

3 

5 
7 

9 

11 
True value 

3 

5 
7 

9 

11 
True value 

+,WHW cMWH~F~I 

0.300172409268669 0.474869958515314 
0.308816007976183 0.314673037801367 
0.315017236581062 0.314894601835653 
0.314940652750427 0.314941706417080 
0.314940974168969 0.314940966425168 
0.314940964313378 0.314940964313378 

~=tcosxcoshycoszcoshw,(x,,y,,z,,w,,t,)=(1,1,1,1,1) 

cCrJWH4Gl &[WH4G2; ZZ = 01 $JWH4G2; ZZ= l] 

0.675873868798821 0.669606158076402 0.675900669984835 

0.695765821490395 0.695848819704875 0.695807279033372 

0.695095023238752 0.695094835550887 0.695094905936746 

0.695105864005589 0.695105864648501 0.695105864487604 

0.695105754043557 0.695105754042633 0.695105754042838 

0.695105754805187 0.695105754805187 0.695105754805187 

where the c,j are constants. For n = 3 only the first term appears on the right side of 
Eq. (4.14). 

Integral (4.13) can be approximated by a cubature formula for U, . Subroutine 
WH3G approximates (4.13) using a Gauss product formula of degree d, where d has 
one of the values 4 = 7(4)3 1. 

5. CUBATURE FORMULAS FOR 4 

5.1. Iz =2p 

From Eq. (1.10) and the results of Section 4.1 we find that 

where 

3(x + xl> = f(x + xt) + bj;*,tf,(x + xt) + ... + b:J”gf(x 

where the bb,, are constants. 
Assume that 

(Pm ,..-t bcn), B, , k = l,..., K, 
rj , Aj = Ajt, j = l,..., J, 

(5.1) 

xt) 
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are as defined in Theorem 2. Then the approximation 

is exact whenever p is a polynomial of degree <d. 
Subroutines WH2F and WH4F in [5] use this method to approximate $(f; x, t) for 

IZ = 2 and 4, respectively. In WH2F d may have the values d = 7(4)31; in WH4F d 
may have the values d = 3(2) 11. 

5.2. II = 2~ + 1 

From (1.7) and (1.10) we have 

(5.2) 

f*(x + Bt> = f(x + Bt> + &tf,(x + Bt) + *-. + C~J~~f(X + /It) 

where the c:,~ are constants. 
Subroutine WH3F approximates (5.2) by a Gauss product formula of degree d 

where d may have one of the values d = 7(4)31. 

6. OTHER APPROXIMATIONS FOR 1/1 

For n = 2, 3 the approximations of Section 4 are linear combinations of values of g. 
For n > 4 those approximations also contain partial derivatives of g. In applications 
it may be inconvenient to use derivatives; therefore in this section we seek approxima- 
tions for $I which only contain values of g for n Z 4. Again, because of the linearity 
of the approximations we can assume (x, t) = (0, t). 

THEOREM 3. Assume that 

(Isk, T..., Pk?A Bk 7 k = l,..., K 

is a cubature formula of degree dfor U, . Assume that 

(6.1) 

r3 , 4 9 j = I,..., J (6.2) 

are found so that the approximation 

Ilr(g; 0, t) N i f APkdrj&t ,..., r3Akf) (6.3) 
I=1 k=l 
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is exact for the functions 

g(x1 ,***, x,) = (Xl2 + *-* + xn2y, v = 0, l)...) [d/2]. (6.4) 

Then approximation (6.3) is exact whenever g is a polynomial of degree fd. 

Proof. To show that (6.3) is exact for all polynomials g of degree <d it suffices to 
show that (6.3) is exact whenever 4 is a wave polynomial which belongs to one of the 
sets L?& ,..., Zz,,,, . This follows from Theorem l(iii). Any such $( g; X, t) has the 
form (3.2) where 1 < m < d + 1; m - s is an odd integer; 0 < s < m; and Hssn is an 
arbitrary homogeneous harmonic polynomial of degree s. For such a # the 
corresponding g is given by expression (3.5). 

Consider two cases. Case I, s > 0. In this case 

Therefore 
H:,,(O,. . ., 0) = 0. 

#Jtg; 0, t) = em.s,nco, 0 = 0. (6.5) 

Next we compute the sum in (6.3) for this #. Using the fact that /?& + ..a + ,$$ = 1, 
for all k, and the fact that 

2 &Hk& ,..a> t&J = 0 
k=l 

(see Eq. (2.3)) we find that the sum in (6.3) is 

(-p-s-1)/2 e;-s,ltm-l 
i &rim-’ f &~~,n(lgkl ,.-, k&J = 0. 

Combined with (6.5), this shows that (6.3) is exact for ail 9 in case s > 0; this is true 
regardless of the values chosen for the rj , Aj . 

Case II, s = 0. The wave polynomials which occur in this case are 

#(g; x> t) = Qm.o.n 3 m = 1, 3,..., M 

where M = 2[d/2] + 1 is the largest odd integer <d + 1. The g which corresponds to 
these lli are 

(- l)h-lb/Z e~,;l)/2(x,2 + . . . + X,2)(m-1)/2, m = 0, 1 ,.. ., M. (6.6) 

But these functions are just constant multiples of the functions (6.4). Therefore if (6.3) 
is exact for the functions (6.4) it will also be exact for the functions (6.6). This com- 
pletes the proof of Theorem 3. 

Now we discuss the possibility of finding the rj , Aj in Theorem 3. We assume 
d = 2d,, - 1. For the function 

g = (Xl2 + ... + x,2) (6.7) 
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the sum in (6.3) is 

tzY i Ajr5”. 
j=l 

We consider the separate cases of n even and n odd. 

6.1. n = 2p 

From (1.6) the #(g; 0, t) which corresponds to function (6.7) is 

Then 

*Ll = t, #YE (p+v- l)! 2*4*.*(2v) 
v!(p- l)! 3.5..*(2~+ 1) r2”+’ v > 0. w-9 

Therefore the ri , Aj must satisfy 

i Air: = /iJt2V, v = 0, I,..., d, - 1. 
i=l 

We are interested in satisfying (6.9) with J as small as possible, J = [(do + 1)/2]. We 
summarize our results. 

d=3, J= 1: 

d = 5, J = 2: 
r, = (2p/3)‘/” A, = t; 

rl = 0, r2 = 

d=7,J=2: 

r12, r2 2, lop + 10 f 2(5(1.1+ I)(5 
- 

2~))“~ 35 . 9 

d=9,J=3: 

rl = 0, r22, r32 = 14~ + 28 rf: 2(7(~ + 2)(5 - 2w2 
63 

With parameter II = 0, subroutine WH4G2 in [5] uses the above approximations 
for PZ = 4 for d = 3(2)11. Each of these approximations uses some values of g(x + xt) 
at points outside the region I x I < 1. For p > 3, d 3 7, these approximations cannot 
be used since some of the rj are complex. 
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Now we consider the possibility of finding approximations (6.3) with all the rj < 1. 
We assume rJ = 1 with J as small as possible, J = [(d,, + 2)/2]. 

d = 3, J = 2: 

rl = 0, r2= 1, A1=( 3<2yt, A,=%; 

d = 5, J = 2: 

r2= 1, 

d=l,J=3: 

( 2Z.L + 2 Ii2 
r1 = 0, r2 = 7 1 

r3= 1, 49/A(3 - 2/A) t 
A2 = 15(/L + 1)(5 - 2/L) 

A2 = WP + 1) t . 
15(5 - 2/A) ’ 

d = 9, J = 3: 

r3 = 1, r12, r22 = 
14~ + 14 f 2(7(~ + l)(7 - 2~))~‘~ 

63 

With parameter ZZ = 1 subroutine WH4G2 uses approximation (6.3) with the rj , 
Ai we have just described for n = 4, d = 3(2)11. In these approximations all the 
points are inside the region ( x I < 1. It is not true that all the rj are ,<I for Z-L > 2. 
For ZJ = 3, rJ-r > 1 for d 3 5 and for TV. > 3 some of the rj are complex for d 3 7. 

6.2. n = 2p + 1 

From ( 1.7) the $(g; 0, t) which corresponds to function (6.7) is 

The rj , A, must satisfy (6.9) with 

#cl = t, 
+ = (2~ + 3)(2~ + 5) .** (2~ + 2r. - 

Y 3 *5 ***(2ZA - I) 
ljt2”+’ I v > 0. (6.10) 

For J = [(do + 1)/2] the results are as fo11ows. 
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d=3, J= 1: 

( 2p + 1 lJ2 rl = 3 ) Al = t; 

d = 5, J = 2: 

rl = 0, l/2 A = 4(1 - ,d ’ 
’ l 3(2~ + 3) 7 

A = 5(2tL + ‘1 ’ 
2 3(2~ + 3) . 

For p > 2, d > 7, the rj , Aj do not exist. 
We also investigated the rj , Aj with rJ = 1, J = [(d,, + 2)/2]. 

d = 3, J = 2: 

rl = 0, r2= 1, A 
1 

= 2(1 - ,d ’ A = c2tL + ‘) ’ ; 
2 3 

d=5, J=2: 

r, = r2= 1, A 
1 

= 5(1 - ,‘d’ 
3(2 - p) ’ 

A = c2r-L + ‘) ’ 
2 3(2 - d * 

Again for p > 2, d > 7, the rj , Aj do not exist. 

7. OTHER APPROXIMATIONS FOR tj 

The approximations of Section 5 use partial derivatives off for all IZ 3 2. Here we 
seek approximations for &f; 0, t) which only use values off. 

THEOREM 4. Assume that 

@M ,..., ,&A &, k = l,..., K 

is a cubature formula of degree dfor U,, . Assume that 

ri , 4, j = l,..., J 

are found so that the approximation 

is exact for the functions 

(7.1) 

(7.2) 

(7.3) 

f(x1 ,***, x) = (Xl2 + ... + xn2)Y, v = 0, l,..., [d/2]. (7.4) 

Then approximation (7.3) is exact whenever f is a polynomial of degree < d. 



50 A. H. STROIJLI 

The proof of Theorem 4 will be omitted; it is analogous to the proof of Theorem 3. 
The requirement that approximation (7.3) be exact for the functions (7.4) leads to the 
equations 

t”’ i A&” = (a/i%) &, Y = 0, l)..., [d/2]. 

We consider the cases of n even and n odd. 

7.1. n = 2p 

In this case the tiy in (7.5) are given by (6.8). Then Eqs. (7.5) become 

where 

j( Ad” = A*, u = 0, l,..., [d/2] 

+o* = 1, +“*= (p$-v-l)! 2.4***(2v) 
v!@- l)! 3.5-..(2v- 1) ’ 

The results for J = [(d, + 1)/2] are as follows. 

d=3, J=l: 

rl = (2p)l/” A, = 1; 

d = 5, J = 2: 

r1 = 0, 

v > 0. 

3P 
tc+l; 

d = 7, J = 2: 

r12, r2 
2 _ 6~ + 6 f 2(3cu + 0(3 - 2P)Y2. 

- 15 2 

d = 9, J =3: 

r1 = 0, r22, r3 
2 _ 10~ + 20 f (5oL + 2)(3 - 2~))1/2 

- 35 

With parameter II = 0 subroutine WH2F2 uses the above approximation for n = 2 
and d = 7(4)31. For n > 4, d 3 7 these approximations cannot be used because some 
of the rj are complex. 

The results for r, = 1, J = [(do + 2)/2] are as follows. 

d = 3, J = 2: 

rl = 0, r2 = 1, A, = 1 - 2/~, A, = 2~; 
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d = 5, J = 2: 

rl = ( > 
q lj2, r2 = 1, A =3-@ 

1 
32&--- 

A2-fk; 
3 - 2p 

d=7, J=3: 

r = +-I- 2 lJ2 r, = 0, 2 ( 5 ) 
Al = (2P - I)(211 - 3) 

3(P+o 

- r3= 1, A, = 25i.a 2~) 
3(P + I)(3 - 2P) 

A = %4P + 1). 
3 3(3 - 2p) ’ 

d=9, J=3: 

1, ha, r2 2 10~ + 10 f 2(5@ + r3= 1)(5 - 2p)Y2 _ - 
35 . 

In general let rl, r2 ,..., rJpl , rJ = 1 denote the ri for a formula of degree d = 
26, - 1 which we have just described. Then r, ,..., rJml coincide with the r, in the 
formula of degree d = 2d,, - 3 of Section 6.1 with J = [(do + 1)/2]. 

With parameter II = 1, subroutine WH2F2 uses approximation (7.3) with the 
above described rj , Aj for n = 2 and d = 7(4)31. Subroutine WH4F2 uses this 
approximation for n = 4 and d = 3(2)11. 

7.2. n = 2p + 1 

In this case I/S,, in (7.5) is given by (6.10). Equations (7.5) become 

j$ Ad” = A+, v = 0, l,..., [d/2], 

+*= (2v+1)(2v+3).**(2~+2~-1) 
Y 1 * 3 *** (2/k - 1) 

v >, 0. 

The results for J = [do + I)/21 are as follows. 

d=3, J= 1: 

d = 5, J = 2: 

r, = (2~ + 1)1/2, A, = 1; 

r, = 0, r2 = 

Therj,Ajdonotexistford>7forallp>l. 
For J = [(do + 2N21, rJ = 1, the results are as follows. 
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d = 3, J = 2: 

r, = 0, r2 = I, A, = -2/4 A,=2/~+1; 

d=5, J=2: 

r, = ( 
2p + 1 

) 
112 

3 ’ r,= 1, AI=+, A,+$. 

Again the rj , Aj do not exist for d > 7 for all p > 1. 

8. FORMULAS FOR 5 

From representation (1.11) we can obtain formulas for 5 from formulas for I,& Here 
we only explicitly consider formulas for 5 which are obtained from the formulas for 
I/ given in Section 4. For a given F(x, t) we define P(x, t) and I;?E(x, t) by Eq. (4.6) and 
(4.14), respectively. 

THFOREM 5. Assume that 

is a quadrature formtda of degree d. Assume that 

&z 3”‘~ I%), Ble > k = l,..., K, 

ri , A, = a;.& j = l,..., J, 

are dejined as in Theorem 2. Then the approximations 

(8.2) 

(8.3) 

5UT x, t> = t2 5 i &GWxl + rj8klrlzt,..., x, + rdkvd, (1 - 71) t) 
k-1 Z=l for n = 2~ + 1 

have akgree d. 

(8.5) 

Proof. We give the proof for approximation (8.4); the proof for (8.5) is analogous. 
Without loss of generality we can assume (x, 1) = (0, t). Then it suffices to prove that, 
for x = 0, the sum in (8.4) equals the integral 

s 
t I,@ 0, t - s; T) d7 = (l/wn) i’ ;I:2wn(i x I)(t - #(x(t - 7)~ 7) dX dT (8.6) 

0 
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when P is an arbitrary monomial 

In (8.6) we make the change of variable t - T = +. Then this integral becomes 

(t2/w,) l1 f+dI x I) &qt, (1 - 7) t) dx dq. (8.8) 
IxlQ 

For monomial (8.7) integral (8.8) is 

(8.9) 

For monomial (8.7) and x = 0, the sum in (8.4) is found to be 

(8.10) 
j=lk=l 

By the assumed properties of formulas (8.1)-(8.3) the expressions (8.9) and (8.10) are 
seen to be equal. Since (8.1) has degree dit follows that (8.4) is not exact forp = #+l. 
This completes the proof. 

Subroutines WNH2 and WNH3 in [5] use (8.4) and (8.5), respectively, to approxi- 
mate 5(x, t) for n = 2 and n = 3 for d = 7(4)31. Formula (8.1) is taken to be a Gauss 
formula. 

9. EXAMPLFS 

Here we give the results of numerical examples of (l.l), in each of the dimensions 
n = 2, 3, and 4. The results are given in Tables 2,3, and 4, respectively. 

For n = 2, we solved (1.1) at (x0 , y, , to) = (4, 2, 3) with 

J-(x, y, t) = -(15/4)(x + y + w2, 
f(x, u) = (x + Jv27 
dx, U) = (5/2)(x + w. 

The true solutions are 

4(x, y, t) = ij[(x + y + t21'2)5'2 + (x + y - t21’2)5’21, 
#(x, y, t) = (2’/“/4)[(x + y + t21’2)s/2 - (x + y - t21/2)s’8], 

u(x, y, t) = (x + y + t)5’2 5=u-$-$A 

We used the following subroutines listed in [5]. 
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(i) For problem (1.2), subroutine WH2F, which uses the formulas of Section 5.1; 
this requires the function f(x, JJ) and also the function 

(ii) For problem (1.2), subroutine WH2F2 (with parameter ZZ = 0), which uses 
formulas of Section 7.1; this requires only f(x, y) but has some points outside the 
region of integration. 

(iii) For problem (1.2), subroutine WH2F2 (with parameter ZZ = l), which 
uses formulas of Section 7.1; this requires only f(x, u) and has all the points inside 
the region. 

(iv) For problem (1.3), subroutine WH2G, which uses the formulas of 
Section 4.1. 

(v) For problem (1.4), subroutine WNH2, which uses formulas of Section 8. 

For II = 3 we solved (1.1) at (x,, , y0 , z,, , t,,) = (2,2, 2,3) with 

%G Y, z, t) = 2(x + Y + z + t>p, 
f(x, Y, z> = 14x + Y + 3, 
g(x, Y, z> = (x + y + z)-‘. 

The true solutions are 

4(x, Y, z, t) = it ln[(x + Y + z)” - 3t21, 
#(x, y, z, t) = (31/2/6)[ln(x + y + z + t31f2) - In(x + y + z - t391, 

6 Y, z, t) = W + y + z + t) i=Zl-4-l). 

We used the following subroutines from [5]. 
(vi) For problem (1.2), subroutine WH3F, which uses the formulas of 

Section 5.2 
(vii) For problem (1.3), subroutine WH3G, which uses formulas of 

Section 4.2. 
(viii) For problem (1.4), subroutine WNH 3, which uses the formulas of 

Section 8. 

For n = 4 we have not provided a subroutine for (1.4); therefore we are restricted 
to the homogeneous problems (1.2) and (1.3). 

We solved problem (1.2) at (1, 1, 1, 1, 1) withf= sin(x +v + z + w); the true 
solution is r$ =fcos 2t. We used the following subroutines from [5]. 

(ix) WH4F, which uses formulas of Section 5.1; this requires f(xl ,..., x4), 
tf,(x, + XA.-, x4 + x40 and 

t2ftt(x1 + Xd,..., x4 + x4t) = i i (Xi - XOj)(Xk - x0?%) &f(x, ,...,Xd). 
j=, k= J A 
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(x) WH4F2, which uses formulas of Section 7.1; this requires only J 

We solved problem (1.3) at (1, 1, 1, I, 1) with 

g = cos x cash y cos z cash w. 

The true solution is # = tg. We used the following subroutines. 
(xi) WH4G, which uses formulas of Section 4.1; this requires g(x, y, z, IV) and 

tgfx + Xl&..., w + X4@ 
(xii) WH4G2 (with parameter ZZ = 0) which uses formulas of Section 6.1; this 

requires only g but has some points outside the region. 
(xiii) WH4G2 (with parameter ZZ = 1) which uses formulas of Section 6.1; 

this requires only g and has all points inside the region. 

The error which is obtained in using the above formulas to solve problems (1.2)- 
(1.4) depends, to a considerable extent, on the smoothness of the functions5 g, and F. 
One should not assume that the error which is obtained in any particular problem 
will be of the same order of magnitude as that achieved in the above examples. 
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